Visible light optical coherence microscopy of the brain with isotropic femtoliter resolution in vivo.
نویسندگان
چکیده
Most flying-spot optical coherence tomography and optical coherence microscopy (OCM) systems use a symmetric confocal geometry, where the detection path retraces the illumination path starting from and ending with the spatial mode of a single-mode optical fiber. Here we describe a visible light OCM instrument that breaks this symmetry to improve transverse resolution without sacrificing collection efficiency in scattering tissue. This was achieved by overfilling a water immersion objective on the illumination path while maintaining a conventional Gaussian mode detection path (1/e2 intensity diameter ∼0.82 Airy disks), enabling ∼1.1 μm full width at half-maximum (FWHM) transverse resolution. At the same time, a ∼0.9 μm FWHM axial resolution in tissue, achieved by a broadband visible light source, enabled femtoliter volume resolution. We characterized this instrument according to paraxial coherent microscopy theory and, finally, used it to image the meningeal layers, intravascular red blood cell-free layer, and myelinated axons in the mouse neocortex in vivo through the thinned skull.
منابع مشابه
Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography.
We present a novel extended-focus optical coherence microscope (OCM) attaining 0.7 μm axial and 0.4 μm lateral resolution maintained over a depth of 40 μm, while preserving the advantages of Fourier domain OCM. Our system uses an ultra-broad spectrum from a supercontinuum laser source. As the spectrum spans from near-infrared to visible wavelengths (240 nm in bandwidth), we call the system visO...
متن کاملSimultaneous optical coherence tomography and autofluorescence microscopy with a single light source.
We have accomplished simultaneous spectral domain optical coherence tomography (SD-OCT) and autofluorescence (AF) microscopy with a broadband light source centered at 415 nm. The light source was provided by frequency-doubling of an ultra-fast broadband Ti:Sapphire laser. With a bandwidth of 8 nm, the visible SD-OCT achieved a depth resolution of ~12 μm. Since the two imaging modalities are pr...
متن کاملExperimental Visualization of Labyrinthine Structure with Optical Coherence Tomography
Introduction:Visualization of inner ear structures is a valuable strategy for researchers and clinicians working on hearing pathologies. Optical coherence tomography (OCT) is a high-resolution imaging technology which may be used for the visualization of tissues. In this experimental study we aimed to evaluate inner ear anatomy in well-prepared human labyrinthine bones.Materials and Methods:Thr...
متن کاملSpectroscopic imaging with spectral domain visible light optical coherence microscopy in Alzheimer’s disease brain samples
A visible light spectral domain optical coherence microscopy system was developed. A high axial resolution of 0.88 μm in tissue was achieved using a broad visible light spectrum (425 - 685 nm). Healthy human brain tissue was imaged to quantify the difference between white (WM) and grey matter (GM) in intensity and attenuation. The high axial resolution enables the investigation of amyloid-beta ...
متن کاملNear-infrared optical-resolution photoacoustic microscopy.
Compared with visible light (380-700 nm), near-infrared light (700-1400 nm) undergoes weaker optical attenuation in biological tissue; thus, it can penetrate deeper. Herein, we demonstrate near-infrared optical-resolution photoacoustic microscopy (NIR-OR-PAM) with 1046 nm illumination. A penetration depth of 3.2 mm was achieved in chicken breast tissue ex vivo using optical fluence within the A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics letters
دوره 43 2 شماره
صفحات -
تاریخ انتشار 2018